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6 Depth, Cohen—Macaulay and Gorenstein

Definition 6.1. Let A be a Noetherian ring, I an ideal of A and M a finite A-module. We define the
I-depth depth; M of M as the maximum length of an M-regular sequence contained in 1.

If depth; M = 0, that is, I is contained in the zerodivisors of M, it follows by prime avoidance that
I C P for some associated prime P € Ass M.

Before stating and proving results regarding depth and the Ext groups, we recall a lemmaﬂ that we
use in the proof of Theorem 6.2.

Lemma 6.1. Let A be a ring and N, M modules over A. Assume that N is finitely presented. Then
Homy (N, M)p 2 Homu, (Np, Mp) for any P € Spec A. Here finite presentation of N means there exists
A®" = N — 0 with finitely generated kernel; this holds when A is Noetherian and N is finite.

Theorem 6.2. Fixn > 1. Let A be a Noetherian ring, I an ideal of A and M a finite A-module with
M/IM # 0. Equivalent conditions:

(1) Ext'y (N, M) =0 for all i <n and for every finite A-module N with Supp N C V(I).
(2) Ext'y(A/I, M) =0 for all i < n.

(3) Ext'y(N, M) =0 for all i < n and for some finite A-module N with Supp N = V (I).
(4) depth; M > n: there exists an M -regular sequence in I of length n.

Proof. 1 = 2 = 3 are trivial given that Supp(A4/I) = V(I).

We prove 3 = 4 by induction on n > 1. If n = 1, then Ext% (N, M) = Hom4(N, M) = 0 for some
finite A-module N with Supp N = V(I). Suppose for a contradiction that there is no M-regular element
in I, that is, I only contains zerodivisors of M. Then by Lemma 1.2 (3), I is contained in Upepss, 1r s
and this is a finite union by Lemma 1.2 (4). So by prime avoidance, I is contained in an associated
prime P. In other words, P € V(I) = Supp N and hence Np # 0. So by Nakayama, Np/(PAp)Np # 0.
However, if we write k(P) for the residue field Ap/PAp, we get

Np/(PAp)Np = k(P) ® 4, Np = k(P) ®a4, (Ap ®4 N)
= (k(P) ®ap Ap) ®a N = E(P)®4 N.

Thus k(P)®a N is a nonzero k(P)-vector space and so by linear algebra, Homy,py(k(P)®a N, k(P)) # 0.
Pick a nonzero k(P)-homomorphism f. Then f is clearly also an Ap-homomorphism. Also, since P is an
associated prime, we have an injection, A/P < M and since localisation is exact, we have an injection
t: k(P) < Mp. Now consider the composite

Np — Np/(PAp)Np = k(P) @4 N L k(P) < Mp.

This is nonzero and hence Hom 4, (Np, Mp) # 0. So by Lemma 6.1, Hom (NN, M) # 0 which gives a
contradiction. This proves the case n = 1. Now suppose n > 1. By the base case, we must have some
x1 € I which is M-regular. Put My := M/x1 M, then we have a short exact sequence

0—-M3 M- M —0,
Applying the covariant Ext gives a long exact sequence
oo = BxtU YN, M) — ExtYy (N, M) % Ext’y (N, M) — Ext’y (N, M;) — Ext" (N, M) — ---

But by assumption, Ext’ (N, M) = 0 for all i < n, and hence Ext’y(N, M;) = 0 for all i < n — 1. So
by induction, there exists an M;-regular sequence zs,...,x, in I and hence z1,...,z, is an M-regular
sequence in I so we are done.

1This belongs earlier with the discussion on localisation S~ ®4 S~1. Localisation is exact, and compatible with Hom
modules. I used it in the proof that locally free implies projective.



To prove 4 = 1, we again argue by induction on n > 1. If n = 1, then we have an M-regular
element z € I. Let N be finite such that Supp N C V(I). Since N is finite, V(Ann N) = Supp N and
so I C rad(Ann N). Thus 2™ € Ann N for some m > 1. Let ¢ € Ext (N, M) = Hom4 (N, M). Then
2™p(n) = p(z™n) = ¢(0) = 0. But recall that x is M-regular, hence it must be the case that ¢(n) =0
for all n € N, which proves the base case. Now let n > 1 and let «1,...,z, be an M-regular sequence in
I. Put My := M/x1 M, then we have a short exact sequence

0> M5 M— M —0
Again we get a long exact sequence
oo = Bxt’y YN, My) — Ext’y (N, M) =5 Ext’y (N, M) — Ext’ (N, M) — Ext4"™ (N, M) — -+ .

Now zo,...,x, is an M;-regular sequence in I and so by induction, Exth(N, M;)=0foralli <n-—1.
Hence from the long exact sequence, we get an injection

0 — Ext’y (N, M) 5 Ext’y (N, M)

for all i < n. But Ext’;(N, M) is a subquotient of Homa (N, I*), where I* is an injective resolution
of M. The same argument as in the base case shows that for some m > 1 multiplication by z{* kills
the A-module Hom 4 (N, I*) and so it also kills Ext’ (N, M). So multiplication by z7* as an endomor-
phism of Ext’ (N, M) is both injective (as the composition of injective maps) and the zero map, hence
Ext’ (N, M) = 0 for all i < n. Notice that the assumptions A Noetherian and M finite are not necessary
for the proof of 4 = 1. O

Corollary 6.3. Let A be a Noetherian ring, I an ideal of A and M a finite A-module. Then
depth; M = inf{i | ExtY(A/I, M) # 0}

Proof. Let d := depth; M. Then we have a regular sequence of maximal length x1,...,z4 in I. Put
M; :=M/(x1,...,2;)M for i =1,...,d. We start with the usual short exact sequence

0— M2 M— M —0
Applying Ext’y (A4/1,-) gives a long exact sequence,
oo Bxty Y(A/T, M) — Ext’y Y(A/T, M) — ExtYy (A/I, M) =% Exty (A/I, M) — --- .

By the previous theorem, Ext’(A/I, M) = 0 for all i < d, thus from the exact sequence we see that
Exty (A/I,M;) =0 for all i <d — 1. Now if ¢ = d — 1, we have an exact sequence

0=Ext4 Y (A/I, M) — Ext (A/I, My) — Ext4 (A/I, M) =% Ext® (A/I, M)

Since z; € I, multiplication by z; kills Ext% (A/I, M) and so Ext4 ' (A/I, M;) = Ext% (A/I, M)We next
consider the short exact sequence

0—>M1x—2)M1—>M2—>0
Repeating the process above using the information we just obtained about the A-modules Ext(A/T, M)
for i < d— 1 gives that Ext’y(A/I, My) = 0 for all i < d — 2 and Ext%(A/I, My) = Ext% ' (A/I, My).
Iterating this, we get a chain of isomorphisms

Ext® (A/I, M) = Extd Y (A/I, My) = - = Ext!y (A/I, My_1) = Ext% (A/1, My)

Thus if Ext%(A/I, M) is zero, Ext%(A/I, M) is also zero. Thus by Theorem 6.2, there exists an M-
regular element x4y € I. But then z4,...,24,24+1 would be an M-regular sequence contained in I,
which contradicts depth; M = d. O



Remark. If A,m, k is local Noetherian and M finite, we simply write depth M to mean depth, M =
inf{i | ExtY (k, M) # 0}

Corollary 6.4. Let A, m be a local Noetherian ring and M a finite A-module with depth M = n. Then we

can extend any M -regular sequence x1,...,x, € m to a mazimal reqular sequence x1,...,x, (necessarily
r <mn).
Proof. If r = n we are done so assume r < n. We again put M; := M/(xy,...,x;)M for i = 1,... 7.

Then from the proof of the previous corollary, we have that Ext’y(A/I, M) = Ext%(A/I, M,). Since
7 < n, we know by Theorem 6.2 that Ext"(A/I, M) = 0 and hence Ext%(A/I, M,) = 0. But again by
Theorem 6.2, this gives us an M,-regular element x,,; € m, and thus z1,...,2,,x,41 is an M-regular
sequence. This process can be iterated until we reach maximal length. O

Corollary 6.5. Let A,m be a local Noetherian ring and M a finite A-module. If x1,...,x, is an M-
regular sequence in m, then

depth(M/(x1,...,2,)M) = depth M — 7.

Proof. Clearly, depth M > depth(M/(z1,...,2,)M) + r, that is, depth(M/(z1,...,2,)M) < depth M —
r. Conversely, let d := depthM > r. By Corollary 6.4, x1,...,x, can be extended to a maximal
SeqUENCe X1, ..., Ty, Tpyl,...,L4. Then Tyi1,...,x4 is a regular sequence for M/(z1,...,z,)M. Thus
depth(M/(x1,...,2,)M) > depth M —r. O

Theorem 6.6 (Ischebeck’s Theorem). Let A,m be a local Noetherian ring, and M, N nonzero finite
A-modules. Put depth M =k and dim N = n. Then

Exty(N,M)=0 foralli<k—n.

Proof. We argue by induction on n > 0. If n = 0, then A/ Ann N is zero dimensional Noetherian and
hence Artinian, with unique prime ideal m/ Ann N. So V(Ann N) = V(m) and hence by Theorem 6.2
Extil(N, M) =0 for all i < k. Now let n > 0. By Corollary 1.3, we have a chain 0 = Ng C N; C--- C
N, = N, with N;/N;_; =& A/P;, with P; € Spec A. Suppose we had the result for N = A/P, P € Spec A.
Consider the short exact sequence

0—>A/P1—>N2—>A/P2—>0
Applying the contravariant Ext’y (—, M), we get a long exact sequence
-+ = ExtY(A/ Py, M) — Exty(Ny, M) — Ext’y (A/Py, M) — - -

Then Ext’y(A/Py, M) = Ext’y(A/Py, M) = 0 for i < k — max{dim(A/P;),dim(A/P;)} and so

Ext’y(Ny, M) = 0 for i < k — max{dim(A/P;),dim(A/P,)}.

Next we consider the short exact sequence

0— Ny —» N3 — A/P; =0

and repeating the same argument, we get that Ext’y (N3, M) =0
for all i < k — max{dim(A/Py),dim(A/P;),dim(A/Ps)}.

Continuing in the same way we get that Ext’y (N, M) = 0 for all i < k — max]_,{dim(A/P;)}. But
recall that by exactness o localisation, Supp N = J;_; Supp(A/P;), where Supp(A/P;) = V(P;) is closed
for each 7. Hence n = dim N = max]_,{dim(A/P;)}, which gives the result. Thus it suffices to prove the

induction step for N = A/P with P € Spec A. Since n = dim(A/P) > 0, P is not maximal. Thus we can
find « € m that is not in P (In other words, z € m is A/P-regular). Consider the short exact sequence

0—A/P5 A/P — A/(P+zA) =0



Applying the contravariant Ext, we get a long exact sequence
- — ExtyU (A/(P + zA), M) — Ext'y(A/P, M) 5 Ext’ (A/P, M) — Exty(A/(P + zA),M) — - -

Now since z is A/ P-regular and A/(P+xA) = (A/P)/x(A/P), we have by Corollary 5.8, that dim(A/(P+
xA)) =n — 1. So by induction, Ext’(A/(P 4+ xzA), M) =0for alli < k— (n—1) = k —n + 1. Hence we
have an isomorphism

0 — Ext’y(A/P,M) % Ext'y(A/P,M) — 0
for alli < k—n. But z € m and Ext’y(A/P, M) is a finite A-module, thus by Nakayama, Ext’ (A/P, M) =
0 for all e < k —n. O

Corollary 6.7. Let A,m be local Noetherian and M finite. Then for any P € Assq M
dim(A/P) > depth M.

Proof. Suppose for a contradiction that depth M > dim(A/P). Then by Theorem 6.4, we have that
Ext%(A/P,M) = Homa(A/P,M) = 0. But P is an associated prime, hence we have an injection
A/P < M. so we get a contradiction. O

Definition 6.2. Let A, m be local Noetherian and M finite. Recall that we always have dim M > depth M
by Corollary 5.8. We say that M is Cohen—-Macaulay (CM for short) if M # 0 and dim M = depth M,
that is if the depth of M is as large as possible. The zero module is also Cohen—Macaulay by convention.
A local Noetherian ring is Cohen—Macaulay if it is Cohen-Macaulay as a module over itself.

Lemma 6.8. Let A,m be a local Noetherian ring and M a finite A-module. If M is Cohen—Macaulay,
then dim(A/P) = dim M = depth M for every associated prime P € Assa M.

Proof. One can show that rad(Ann M) = (\pcpg, ar P and hence V(Ann M) = (Upcpgs, ar P (in this
case Assy M is finite). Hence

dim M = dim(V(Ann M)) = dim | J P

PeAssa M
= ppax dim(V(P)) = plax dim(A/P)
> min dim(A/P) > dim M.

T PcEAssa M

Here the last inequality follows from Corollary 6.5. Since M is CM, dim M = depth M and so the result
follows. O

Lemma 6.9. Let A,m be local Noetherian, M finite and x4, ...,z an M-reqular sequence in m. Then
M is Cohen—Macaulay if and only if M/(x1,...,x.)M is Cohen—Macaulay.

Proof. This follows at once by Corollary 5.8 and Corollary 6.5. O

Lemma 6.10. Let A,m be a local Noetherian ring and M a finite A-module with dim M = §(M) = n.
Equivalent conditions:

(1) M is Cohen—-Macaulay (that is, depth M = dim M ).
(2) FEvery system of parameters x1,...,x, of M is an M -regular sequence.

Proof. 2 = 1 is clear by definition of depth and the fact that dim M > depth M always holds.
For 1 = 2, we argue by induction on n > 0. If n = 0, there is nothing to prove. Let n = 1. Let
x € m, with M/xM finite length. Then dim(A/(Ann M + zA)) = dim(M/xzM) = 0. We now claim that
x ¢ P for any P € Assqg M. If x € P € Assy M, then Ann M + A C P and hence A/ is a quotient of
A/(Ann M + zA). So
dim(A/PB) < dim(A/(Ann M + zA)) =0



However, since we assume that M is CM, we have dim(A4/B) = dim M = 1 by Lemma 6.8, which gives a
contradiction. Thus z is not contained in any associated prime and so it must be M-regular, proving the
base case. Now suppose n > 1, and let x1,...,z, be a system of parameters of M. Let My := M/x1 M.
Then dim(M;) = §(M;) = n — 1 and hence the same argument as in the base case shows that z is
M-regular. Thus by Lemma 6.9, M; is CM of dimension n — 1 and so by induction, any system of
parameters of My, is an M;i-regular sequence. In particular, xs,...,z, must be an M;-regular sequence
and so x1,...,x, is an M-regular sequence. O]

So far we have defined Cohen—Macaulay local rings (and modules). In our quest for various equivalent
ways to define Gorenstein local rings, we first state and prove a result that characterises the injective
dimension of a module based on the vanishing of certain Ext groups.

Theorem 6.11. Let A be a Noetherian ring and N an A-module. Then
injdim N <n if and only if EX’CT'I(A/P7 N)=0 for every P € Spec A.

Proof. The forwards direction is trivial. Conversely, suppose EthH(A /P, N) =0 for every P € Spec A,
and let M be a finite A-module. We have a filtration 0 = My € M; C --- C M, = M with each
M;/M;_1 = A/P; for some P; € Spec A. By repeatedly taking short exact sequences induced from the
filtration (as in previous proofs), using the long exact sequence of Ext, we deduce that Ext’;"* (M, N) = 0.

Now let . )
N N Y -y CLRUANG [N

be an injective resolution of N. Set C := I""!/ker(d"~1). I claim that C is injective. We have
0— C=im(d" ) — 1" L

. . d" dnt? . C .
is exact. That is, I® — I"t!1 Z— ["*+2 5 ... is an injective resolution of C. Hence

Extly(M,C) = Ext’ ™ (M, N) =0

Now the choice of finite M was arbitrary. In particular this holds for M = A/I where [ is any ideal of
A. Consider the short exact sequence

0—-I—->A—A/I—>0
Applying the contravariant Exty (-, C') gives the exact sequence
0 — Hom4(A/I,C) — Homa(A,C) — Hom4(I,C) — Exty(A/I,C) =0

Thus the induced map Hom (A, C) — Hom 4 (I, C) is surjective, that is every A-homomorphism I — C,
extends to an A-homomorphism A — C. Hence C' is injective by Baer’s criterion and thus N has an
injective resolution of length n. O

Definition 6.3. Let A,m be a local ring and N an A-module. We define the socle of N to be the
submodule
Socle(N) := {m € N | Ann(m) D m}

This is naturally isomorphic to Hom 4 (k, N) via the map sending an element f € Homu(k, N) to f(1).
We can view Socle(N) as a k-vector space in a natural way.

Theorem 6.12. Let A,m, k be a local Artinian ring. FEquivalent conditions:
(1) Socle(A) = k. That is the socle of A, is 1-dimensional as a k-vector space.

(2) A is injective as a module over itself.



Proof. We first prove 1 = 2. To say that A is self-injective is the statement that A has zero injective
dimension. Thus from Theorem 6.11, it suffices to show that Ext!(A/P, A) = 0 for all P € Spec A. But
A is local Artinian and hence Spec A = {m}. Thus we are left with showing that Ext} (k, A) = 0. Since
A is Artinian, it admits a Jordan—Holder series

0:AOCA1C"'CAn_1CAn
AiJA;—y =2k foralli=1,...,n. Here A, = A, and necessarily A,_1 = m and A; = k. First consider

the short exact sequence
0—>k— Ay —k—0

Applying the contravariant Ext’y (-, A) gives a long exact seqeunce
0 — Hom(k, A) — Hom(As, A) — Homa(k, A) 22 Extl(k, 4) — - -
Thus we have

4(Homu(As, A)) = 264 (Homy (k, A)) — €4 (im(85)
=2 dimk(HomA(k;, A)) — EA(lm(ég))

Now consider the short exact sequence
0— Ay A3 —=k—0
Playing the same game gives
a(Homy(As, A)) = £4(Homa(Ag, A)) + La(Homa(k, A)) — £4(im(d3))
= 3dimg (Homy (k, A)) — £4(im(d2)) — £a(im(d3))
Continuing in the same way gives
l4(Homa(Ay, A)) = ndimg Homa (k, A)) — En:fA(im((Si)).
i=2
But we are assuming that Socle(A) = Homg(k, A) is 1-dimensional as a k-vector space. Therefore
dimy, (Hom 4 (k, A)) = 1. Also,
La(Homu (A, A)) = La(Homy (A, A)) =La(A)=n

(the length of our Jordan—Hélder series). Thus the above equality becomes

So every term in the sum must be zero and hence d; = 0 for all 7. In particular, we have an exact sequence
0 — Homy (k, A) — Homu(A, A) — Hom(m, A) 22=% Ext!, (k, A) — Ext} (A, 4) =0

We deduce that Ext’,(k, A) = 0 and we are done.

The proof of 2 = 1 is similar. We use the same Jordan—Hoélder series for A, and consider the same
short exact sequences arising from this series. However, we assume that A is injective as an A-module, so
the functor Hom 4 (-, A) is exact. So at each step £4(Homa(A4;, A)) = €a(Ai—1, A)) + dimg (Hom (k, A)).
Thus we end up with

n=~0s(Homus(A,, A)) = ndim,(Homy (k, A))

from which we conclude that the socle of A is 1-dimensional as required. O



We are now finally in a position to define Gorenstein local rings in 4 equivalent ways

Definition 6.4. Let A, m be local Noetherian. We say that A is Gorenstein if it satisfies any of the four
conditions of the next theorem.

Theorem 6.13. Let A, m be local Noetherian and dim A = n. Let x1,...,xz, be a system of parameters
of A. Equivalent conditions:

(1) ExtYy(k, A) =0 for all i # n and Ext’y(k, A) = k.

)
(2) A is Cohen—Macaulay and Ext’y (k, A) = k.

(3) A is Cohen—Macaulay and the Artinian quotient A/(x1,...,x,) has 1-dimensional socle.
(4) A is Cohen—Macaulay and the Artinian quotient A/(x1,...,xy) s self-injective.

The theorem says that Gorenstein is essentially Cohen—Macaulay plus a bit extra. Characterisations
3 and 4 tell us that the extra condition is that we can cut A by a system of parameters (or equivalently
by Lemma 6.9, by a regular sequence!) to dimension 0 (that is, Artinian), and the resulting quotient
satisfies some nice properties. In other words, n-dimensional Gorenstein is being able to find a regular
sequence of length n such that the resulting Artinian quotient satisfies one of the equivalent properties
in 3 or 4.

Proof. 1 = 2 is trivial by using the characterisation of depth in terms of the nonvanishing of Ext groups.
For 2 & 3, recall that since A is n-dimensional CM, in particular depth A = n and hence we’ve seen
before that Ext’(k, A) = Ext%(k, A/(x1,...,2,)) = Homa(k,A/(z1,...,x,)) form which the result
follows. Note that this also shows that 3 and 4 do not depend on the choice of such system of parameters.
Now for 3 < if 4, we can simply invoke Theorem 6.12, after observing that Socle(A/(z1,...,z,)) =
Homa(k, A/(x1,...,x,)) is isomorphic to Hom 4 (g, ... 2.)(k, A/(z1,...,2,)) as A/(21,. .., 2,)-modules.
Thus we only have 2 = 1 left to prove. For this we argue by induction on n. If n = 0, then
Homu(k, A) = k and by Theorem 6.12, A is self injective and thus computing the Ext groups, using an
injective resolution of A, we get that Ext% (k, A) = 0 for all i > 0. Now suppose n > 0. Since A is CM,
depth A = n > 1 and hence we have some regular element x € m. Put A; := A/xA. Then by Corollary 5.8
and Lemma 6.9, A; is n — 1-dimensional and CM. Thus by induction, Extih (k,A;)=0foralli#n—1
and Exty ' (k, A) = k. We also have, for all i > 1, Ext(k, A) = Ext’; " (k, A;). Hence Ext’y(k, A) = 0
for all i > 0 and not equal to n, and Ext; (k, A) = k. For i = 0, let ¢ € Ext%(k, A) = Hom(k, A). Then
since x € m, it annihilates k& and we have xp(1) = ¢(z) = ¢(0) = 0. But recall by assumption that z is

A-regular thus we must have that ¢(1) = 0 and thus Ext% (k, A) = 0 which concludes the proof.
O
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